Abstract

We develop two notions of sensitivity to initial conditions for measurable dynamical systems, where the time before divergence of a pair of paths is at most an asymptotically logarithmic function of a measure of their initial distance. In the context of probability measure-preserving transformations on a compact space, we relate these notions to the metric entropy of the system. We examine one of these notions for classes of non-measure-preserving, nonsingular transformations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.