Abstract

Cycloheximide and 6-azauridine were employed to study the time course of measles virus protein and nucleic acid syntheses in AV3 cells. Synthesis of ribonucleic acid (RNA) essential for infectivity was first detected at 6 hr and increased concurrently with the formation of essential protein. Maximum levels of virus-specific RNA and protein were present by 18 hr, a time when only 5% of progeny virus was detected. Essential RNA and protein syntheses preceded the formation of infectious virus by at least 10 to 12 hr. The time course of RNA and protein syntheses essential for the formation of complement-fixing (CF) antigen and salt-dependent agglutinin (SDA) was also determined. RNA synthesis essential for the formation of SDA was first detected at 2 hr and was present maximally by 6 hr, whereas SDA-protein increased concurrently with the protein essential for infectivity. This suggested that the last protein essential for infectivity may be SDA. RNA synthesis essential for the formation of CF antigen was first detected at 4 hr, while CF-protein increased at 5 hr and preceded SDA-protein and protein essential for infectivity by approximately 3 hr. Reversal of inhibition of protein synthesis by cycloheximide indicated that early protein synthesis (1 to 3 hr) was required for the formation of infectious virus. The data suggest that the relatively long eclipse period observed with measles virus is related to a long maturation period rather than to late formation of early proteins, viral RNA, or structural proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.