Abstract

Measles virus (MV) causes various responses including the induction of immune responses, transient immunosuppression and establishment of long-lasting immunity. To obtain a comprehensive view of the effects of MV infection on target cells, DNA microarray analyses of two different cell-types were performed. An epithelial (293SLAM; a 293 cell line stably expressing SLAM) and lymphoid (COBL-a) cell line were inoculated with purified wild-type MV. Microarray analyses revealed significant differences in the regulation of cellular gene expression between these two different cells. In 293SLAM cells, upregulation of genes involved in the antiviral response was rapidly induced; in the later stages of infection, this was followed by regulation of many genes across a broad range of functional categories. On the other hand, in COBL-a cells, only a limited set of gene expression profiles was modulated after MV infection. Since it was reported that V protein of MV inhibited the IFN signaling pathway, we performed a microarray analysis using V knockout MV to evaluate V protein's effect on cellular gene expression. The V knockout MV displayed a similar profile to that of parental MV. In particular, in COBL-a cells infected with the virus, no alteration of cellular gene expression, including IFN signaling, was observed. Furthermore, IFN signaling analyzed in vitro was completely suppressed by MV infection in the COBL-a cells. These results reveal that MV induces different cellular responses in a cell-type specific manner. Microarray analyses will provide us useful information about potential mechanisms of MV pathogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call