Abstract
Measles is a highly contagious, but vaccine-preventable disease caused by the measles virus (MeV). Although the administration of two doses of measles vaccines is the most effective strategy to prevent and eliminate measles, MeV continues to spread worldwide, even in 2022. In measles-eliminated countries, preparedness and response to measles outbreaks originating from imported cases are required to maintain elimination status. Under these circumstances, real-time reverse transcription (RT) PCR for MeV could provide a diagnostic method capable of strengthening the subnational capacity for outbreak responses. Real-time RT-PCR can detect MeV RNA from patients with measles at the initial symptomatic stage, which can enable rapid public health responses aimed at detecting their contacts and common sources of infection. Furthermore, low cycle threshold (Ct) values (i.e., high viral load) of throat swabs indicate high infectiousness in patients with measles. The high basic reproduction number of measles suggests that patients with high infectiousness can easily become super-spreaders. This opinion proposes a possible strategy of rapid and intensive responses to counter measles outbreaks caused by super-spreader candidates showing low Ct values in throat swabs. Our strategy would make it possible to effectively prevent further measles transmission, thereby leading to the early termination of measles outbreaks.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.