Abstract

The mean number of edges of a randomly chosen neighbouring cell of the typical cell in a planar stationary tessellation, under the condition that it has n edges, has been studied by physicists for more than 20 years. Experiments and simulation studies led empirically to the so-called Aboav's law. This law now plays a central role in Rivier's (1993) maximum entropy theory of statistical crystallography. Using Mecke's (1980) Palm method, an exact form of Aboav's law is derived. Results in higher-dimensional cases are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.