Abstract

<p style='text-indent:20px;'>This paper investigates the delay-distribution-dependent exponential synchronization problem for a class of chaotic neural networks with mixed random time-varying delays as well as restricted disturbances. Given the probability distribution of the time-varying delay, stochastic variable that satisfying Bernoulli distribution is formulated to produce a new system which includes the information of the probability distribution. Based on the Lyapunov-Krasovskii functional method, the Jensen's integral inequality theory and linear matrix inequality (LMI) technique, several delay-distribution-dependent sufficient conditions are developed to guarantee that the chaotic neural networks with mixed random time-varying delays are exponentially synchronized in mean square. Furthermore, the derived results are given in terms of simplified LMI, which can be straightforwardly solved by Matlab. Finally, two numerical examples are proposed to demonstrate the feasibility and the effectiveness of the presented synchronization scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.