Abstract

The paper presents the means for measuring the spatial and temporal coherence of temperature in the microregions of a wave of self-propagating high-temperature synthesis (SHS) and revealing the relationship between the events of ignition of individual foci. The method for determining the parameters of the thermal wave structure of the synthesis is based on the chronographical and topographical representation of micro- thermal data in the form of maps that visualize the ergodicity of the SHS process and facilitate the recogni- tion of individual foci of burning on thermal imaging images. The ergodicity of the phenomenon is used in the method to determine the time of induction of the combustion sites, the time of their growth, the growth rate of the foci tangentially to the front of the SHS wave, the size of the foci in the direction of the normal to the front. The technique is implemented in the form of software integrated into the original micro thermal imaging complex. Approbation of the method is represented by the results of experimental studies of the Ni + Al + NiAl system with a variation in the fraction and dispersity of the inert additive. The error in measuring the normal velocity of the SHS front of the wave with the proposed technique was 0.05 %.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.