Abstract

It is shown that Newton's inequalities and the related Maclaurin's inequalities provide several refinements of the fundamental arithmetic-geometric-harmonic mean inequality and Sierpinski's inequality in terms of the means and variance of positive real numbers. We also obtain some inequalities involving third and fourth central moments of real numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.