Abstract

Twin entry turbines are widely used in turbocharging as a means of using the exhaust pulse energy of multi-cylinder engines. For modern engines where high levels of EGR are required, an asymmetric twin-entry turbine has been shown to have considerable advantages. Such turbines require a more developed approach to analysis and design than usual. A meanline model for a radial inflow turbine with twin-entry scroll has been developed. Different total pressures and total temperatures may be specified at each entry. Each volute passage is solved separately from the inlet to the splitter location, where the static pressures of both passages are assumed to be the same. From the volute splitter to the rotor inlet, the two streams mix into one uniform flow following conservation laws of continuity, momentum and energy. Experiments have been conducted on a test stand with a radial turbine with an asymmetric twin-entry scroll, where the inlet conditions can be varied independently for each entry. The test results are compared with the model prediction. A good accuracy of prediction is achieved with a realistic set of modeling coefficients. In the future, insights gained from test data and CFD analysis will be used to develop further the volute mixing model and include explicit partial admission losses in the rotor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call