Abstract

We study a kind of partial information non-zero sum differential games of mean-field backward doubly stochastic differential equations, in which the coefficient contains not only the state process but also its marginal distribution, and the cost functional is also of mean-field type. It is required that the control is adapted to a sub-filtration of the filtration generated by the underlying Brownian motions. We establish a necessary condition in the form of maximum principle and a verification theorem, which is a sufficient condition for Nash equilibrium point. We use the theoretical results to deal with a partial information linear-quadratic (LQ) game, and obtain the unique Nash equilibrium point for our LQ game problem by virtue of the unique solvability of mean-field forward-backward doubly stochastic differential equation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call