Abstract

We analyze a mean-field model of electrons with pure forward scattering interactions on a square lattice which exhibits spontaneous Fermi surface symmetry breaking with a d-wave order parameter: the surface expands along the kx-axis and shrinks along the ky-axis (or vice versa). The symmetry-broken phase is stabilized below a dome-shaped transition line Tc(mu), with a maximal Tc near van Hove filling. The phase transition is usually first order at the edges of the transition line, and always second order around its center. The d-wave compressibility of the Fermi surface is however strongly enhanced even near the first order transition down to zero temperature. In the weak coupling limit the phase diagram is fully determined by a single non-universal energy scale, and hence dimensionless ratios of different characteristic quantities are universal. Adding a uniform repulsion to the forward scattering interaction, the two tricritical points at the ends of the second order transition line are shifted to lower temperatures. For a particularly favorable choice of hopping and interaction parameters one of the first order edges is replaced completely by a second order transition line, leading to a quantum critical point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.