Abstract
We analyze in some detail a recently proposed transfer matrix mean field approximation which yields the exact critical point for several two dimensional nearest neighbor Ising models. For the square lattice model we show explicitly that this approximation yields not only the exact critical point, but also the exact boundary magnetization of a semi--infinite Ising model, independent of the size of the strips used. Then we develop a new mean field renormalization group strategy based on this approximation and make connections with finite size scaling. Applying our strategy to the quadratic Ising and three--state Potts models we obtain results for the critical exponents which are in excellent agreement with the exact ones. In this way we also clarify some advantages and limitations of the mean field renormalization group approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.