Abstract

ABSTRACTIn this special issue article, we bring together our recent research on wetting in confinement, in particular planar walls, wedges, capillary grooves and slit pores, with emphasis on phase transitions and competition between wetting, filling and condensation, and highlight their similarities and disparities. The results presented are obtained with the classical density functional theory (DFT) for fluids, which is a mean-field statistical mechanical framework for including the spatial variations of the fluid density into the thermodynamic equation of state. For wetting in sculpted substrates, we solve numerically the DFT equations to obtain the fluid density profiles, wetting isotherms and phase diagrams. This allows us to contrast the wetting phenomenology of grooves, planar walls, slit and wedge-shaped pores. Of particular interest are the transitions associated with capillary condensation, planar pre-wetting and mean-field wedge pre-filling lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.