Abstract

We derive the mean-field equations arising as the limit of a network of interacting spiking neurons, as the number of neurons goes to infinity. The neurons belong to a fixed number of populations and are represented either by the Hodgkin-Huxley model or by one of its simplified version, the FitzHugh-Nagumo model. The synapses between neurons are either electrical or chemical. The network is assumed to be fully connected. The maximum conductances vary randomly. Under the condition that all neurons’ initial conditions are drawn independently from the same law that depends only on the population they belong to, we prove that a propagation of chaos phenomenon takes place, namely that in the mean-field limit, any finite number of neurons become independent and, within each population, have the same probability distribution. This probability distribution is a solution of a set of implicit equations, either nonlinear stochastic differential equations resembling the McKean-Vlasov equations or non-local partial differential equations resembling the McKean-Vlasov-Fokker-Planck equations. We prove the well-posedness of the McKean-Vlasov equations, i.e. the existence and uniqueness of a solution. We also show the results of some numerical experiments that indicate that the mean-field equations are a good representation of the mean activity of a finite size network, even for modest sizes. These experiments also indicate that the McKean-Vlasov-Fokker-Planck equations may be a good way to understand the mean-field dynamics through, e.g. a bifurcation analysis.Mathematics Subject Classification (2000): 60F99, 60B10, 92B20, 82C32, 82C80, 35Q80.

Highlights

  • Cortical activity displays highly complex behaviors which are often characterized by the presence of noise

  • We prove a propagation of chaos property which shows that in the mean-field limit, the neurons become independent, in agreement with some recent experimental work [13] and with the idea that the brain processes information in a somewhat optimal way

  • We have reviewed two main models of space-clamped single neurons: the HodgkinHuxley and FitzHugh-Nagumo models

Read more

Summary

Introduction

Cortical activity displays highly complex behaviors which are often characterized by the presence of noise. Anatomical data recorded in the cortex reveal the existence of structures, such as the cortical columns, with a diameter of about 50 μm to 1 mm, containing the order of 100 to 100,000 neurons belonging to a few different types These columns have specific functions; for example, in the human visual area V1, they respond to preferential orientations of bar-shaped visual stimuli. In this case, information processing does not occur at the scale of individual neurons but rather corresponds to an activity integrating the individual dynamics of many interacting neurons and resulting in a mesoscopic signal arising through averaging effects, and this effectively depends on a few effective control parameters.

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call