Abstract

We present a construction of a mean-field theory for thermodynamic and spectral properties of correlated electrons reliable in the strong-coupling limit. We introduce an effective interaction determined self-consistently from the reduced parquet equations. It is a static local approximation of the two-particle irreducible vertex, the kernel of a potentially singular Bethe-Salpeter equation. The effective interaction enters the Ward identity from which a thermodynamic self-energy, renormalizing the one-electron propagators, is determined. The dynamical Schwinger-Dyson equation with the thermodynamic propagators is then used to calculate the spectral properties. The thermodynamic and spectral properties of correlated electrons are in this way determined on the same footing and in a consistent manner. Such a mean-field approximation is analytically controllable and free of unphysical behavior and spurious phase transitions. We apply the construction to the asymmetric Anderson impurity and the Hubbard models in the strong-coupling regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.