Abstract
The existing synthetic aperture radar (SAR) ship datasets have an imbalanced number of inshore and offshore ship targets, and the number of small, medium and large ship targets differs greatly. At the same time, the existing SAR ship detection models in the application have a huge structure and require high computing resources. To solve these problems, we propose a SAR ship detection model named mask efficient adaptive network (MEA-Net), which is lightweight and high-accuracy for imbalanced datasets. Specifically, we propose the following three innovative modules. Firstly, we propose a mask data balance augmentation (MDBA) method, which solves the imbalance of sample data between inshore and offshore ship targets by combining mathematical morphological processing and ship label data to greatly improve the ability of the model to detect inshore ship targets. Secondly, we propose an efficient attention mechanism (EAM), which effectively integrates channel features and spatial features through one-dimensional convolution and two-dimensional convolution, to improve the feature extraction ability of the model for SAR ship targets. Thirdly, we propose an adaptive receptive field block (ARFB), which can achieve more effective multi-scale detection by establishing the mapping relationship between the size of the convolution kernel and the channel of feature map, to improve the detection ability of the model for ship targets of different sizes. Finally, MEA-Net is deployed on the Jeston Nano edge computing device of the 2 GB version. We conducted experimental validation on the SSDD and HRSID datasets. Compared with the baseline, the AP of MEA-Net increased by 2.18% on the SSDD dataset and 3.64% on the HRSID dataset. The FLOPs and model parameters of MEA-Net were only 2.80 G and 0.96 M, respectively. In addition, the FPS reached 6.31 on the Jeston Nano, which has broad application prospects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.