Abstract
Mean vector component analysis (MVCA) is introduced as a new method for visualization and clustering of nonnegative data. The method is based on dimensionality reduction by preserving the squared length, and implicitly also the direction, of the mean vector of the original data. The optimal mean vector preserving basis is obtained from the spectral decomposition of the inner-product matrix, and it is shown to capture clustering structure. MVCA corresponds to certain uncentered principal component analysis (PCA) axes. Unlike traditional PCA, these axes are in general not corresponding to the top eigenvalues. MVCA is shown to produce different visualizations and sometimes considerably improved clustering results for nonnegative data, compared with PCA.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.