Abstract
We consider a mean-variance portfolio selection problem in a financial market with contagion risk. The risky assets follow a jump-diffusion model, in which jumps are driven by a multivariate Hawkes process with mutual-excitation effect. The mutual-excitation feature of the Hawkes process captures the contagion risk in the sense that each price jump of an asset increases the likelihood of future jumps not only in the same asset but also in other assets. We apply the stochastic maximum principle, backward stochastic differential equation theory, and linear-quadratic control technique to solve the problem and obtain the efficient strategy and efficient frontier in semi-closed form, subject to a non-local partial differential equation. Numerical examples are provided to illustrate our results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.