Abstract
We consider the problem of hedging an European call option for a diffusion model where drift and volatility are functions of a Markov jump process. The market is thus incomplete implying that perfect hedging is not possible. To derive a hedging strategy, we follow the approach based on the idea of hedging under a mean-variance criterion as suggested by Follmer, Sondermann, and Schweizer. This also leads to a generalization of the Black–Scholes formula for the corresponding option price which, for the simplest case when the jump process has only two states, is given by an explicit expression involving the distribution of the integrated telegraph signal (known also as the Kac process). In the Appendix we derive this distribution by simple considerations based on properties of the order statistics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.