Abstract
AbstractThe mean value inequality is characteristic for upper semi-continuous functions to be subharmonic. Quasinearly subharmonic functions generalise subharmonic functions. We find the necessary and sufficient conditions under which subsets of balls are big enough for the characterisation of non-negative, quasinearly subharmonic functions by mean value inequalities. Similar result is obtained also for generalised mean value inequalities where, instead of balls, we consider arbitrary bounded sets, which have non-void interiors and instead of the volume of ball some functions depending on the radius of this ball.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.