Abstract
We derive a generalization of barycentric coordinates which allows a vertex in a planar triangulation to be expressed as a convex combination of its neighbouring vertices. The coordinates are motivated by the Mean Value Theorem for harmonic functions and can be used to simplify and improve methods for parameterization and morphing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.