Abstract
AbstractThis research quantifies the spatiotemporal statistics of composite radar reflectivity in the vicinity of severe thunderstorm reports. By using over 20 years (1996–2017) of data and 500,000 severe thunderstorm reports, this study presents the most comprehensive analysis of the mesoscale presentation of radar reflectivity composites during severe weather events to date. We first present probability matched mean composites of approximately 5,000 radar images centred on tornado reports that contain one of three types of manually‐labelled convective storm modes—namely, (a) quasi‐linear convective system (QLCS); (b) cellular; or (c) tropical system. Next, we generate composites for tornado report data stratified by EF‐scale and for four temporal periods during which notable severe weather events took place. The data are then stratified by hazard, region, season, and time of day. The results show marked spatiotemporal and intra‐hazard variability in radar presentation. In general, cellular convection is favoured in the Great Plains of the United States, whereas QLCS convection is favoured in the Southeast United States. Night and cool‐season subsets showed a preference for QLCS convection, whereas day and warm‐season subsets showed a preference for cellular convection. These results agree well with the existing literature and suggest that the data extraction and organization approach is sound. Because of this, these data will be useful for future image classification studies in climate and atmospheric sciences—particularly those involving storm mode classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.