Abstract

The fundamental analysis of numerical methods for stochastic differential equations (SDEs) has been improved by constructing new split-step numerical methods. In this paper, we are interested in studying the mean-square (MS) stability of the new general drifting split-step theta Milstein (DSSθM) methods for SDEs. First, we consider scalar linear SDEs. The stability function of the DSSθM methods is investigated. Furthermore, the stability regions of the DSSθM methods are compared with those of test equation, and it is proved that the methods with θ≥3/2 are stochastically A-stable. Second, the nonlinear stability of DSSθM methods is studied. Under a coupled condition on the drifting and diffusion coefficients, it is proved that the methods with θ>1/2 can preserve the MS stability of the SDEs with no restriction on the step-size. Finally, numerical examples are given to examine the accuracy of the proposed methods under the stability conditions in approximation of SDEs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.