Abstract

This paper is concerned with the mean-square exponential stability problem for a class of impulsive stochastic systems with delayed impulses. The delays exhibit in both continuous subsystem and discrete subsystem. By constructing piecewise time-varying Lyapunov functions and Razumikhin technique, sufficient conditions are derived which guarantee the mean-square exponential stability for impulsive stochastic delay system. It is shown that the obtained stability conditions depend both on the lower bound and the upper bound of impulsive intervals, and the stability of system is robust with regard to sufficiently small impulse input delays. Finally, two examples are proposed to verify the efficiency of the proposed results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call