Abstract
It is commonly supposed that, <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">L=\lambdaW</tex> applies to "almost any" queueing system with <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\lambda</tex> some average customer entrance rate, <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">L</tex> the asymptotic expectation or time average of the number of customers in the system and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">W</tex> some average of the sojourn time. This formula is studied for irreducible positive recurrent Markov queueing systems whose state vector <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Z</tex> consists of entries representing queue lengths at the respective service stations; blocking, finite capacities, batch arrivals, and variable rates of arrival and service are consistent with <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Z</tex> . Sojourn times are defined inan augmented Markov model <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Y=(Z,U)</tex> , where the customer marking process <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">U</tex> describes the service discipline in sufficiently general terms to include most possibilities of interest. It is shown that <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">L=\lambda W</tex> is universally applicable, if properly interpreted to take account of state-varying entrance rates, batch arrivals, and multiple customer classes. <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">L,\lambda</tex> , and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">W</tex> may each be equivalently viewed as time averages, means over a regeneration cycle, or expectations with respect to the asymptotic probability structure of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Z</tex> . Indeterminate forms of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">L=\lambda W</tex> are possible within the scope of Markov queueing networks (MQN); as is shown by some examples, these may take the form <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\infty \times 0</tex> for <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\lambda W</tex> , or of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\infty= \infty</tex> for <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">L=\lambda W</tex> .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.