Abstract
We examine the long-time behavior of forward rates in the framework of Heath-Jarrow-Morton-Musiela models with infinite-dimensional Lévy noise. We give an explicit condition under which the rates have a mean reversion property. In a special case we show that this condition is fulfilled for any Lévy process with variance smaller than a given constant, depending only on the state space and the volatility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.