Abstract
This paper deals with the mean residual life function (MRLF) and its monotonicity in the case of additive and multiplicative hazard rate models. It is shown that additive (multiplicative) hazard rate does not imply reduced (proportional) MRLF and vice versa. Necessary and sufficient conditions are obtained for the two models to hold simultaneously. In the case of non-monotonic failure rates, the location of the turning points of the MRLF is investigated in both the cases. The case of random additive and multiplicative hazard rate is also studied. The monotonicity of the mean residual life is studied along with the location of the turning points. Examples are provided to illustrate the results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Probability in the Engineering and Informational Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.