Abstract
AbstractThis paper presents and experimentally validates a physically motivated model for predicting the mean residence time in twin screw extruders. Accurate estimation of the mean residence time and the propagation delay through a plasticating extruder is critical for implementing feedback control schemes employing sensors mounted along the extruder. Experiments were carried out on a 30 mm Krupp Werner and Pfleiderer co‐rotating twin screw extruder equipped with reflectance optical probes over the melting section and mixing section and at the die. The residence time distributions for twelve operating conditions and two screw geometries are compared. The mean residence times predicted by our model are in good agreement with the experimentally measured mean residence times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.