Abstract
An upper bound is given for the mean square Wasserstein distance between the empirical measure of a sequence of i.i.d. random vectors and the common probability law of the sequence. The same result holds for an infinite exchangeable sequence and its directing measure. Similarly, for an i.i.d. sequence of stochastic processes, an upper bound is obtained for the mean square of the maximum, over 0 ⩽ t ⩽ T, of the Wasserstein distance between the empirical measure of the sequence at time t and the common marginal law at t. These upper bounds are derived under weak assumptions and are not very far from the known rate of convergence pertaining to an i.i.d. sequence of uniform random vectors on the unit cube. Our approach, however, allows us to get results for arbitrary distributions under moment conditions and also gives results for processes. An application is given to so-called diffusions with jumps. Moment estimates for these processes are derived which may be of independent interest.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.