Abstract
We compute exactly the mean perimeter and the mean area of the convex hull of a two-dimensional isotropic Brownian motion of duration t and diffusion constant D, in the presence of resetting to the origin at a constant rate r. We show that for any t, the mean perimeter is given by 〈L(t)〉=2πsqrt[D/r]f_{1}(rt) and the mean area is given by 〈A(t)〉=2πD/rf_{2}(rt) where the scaling functions f_{1}(z) and f_{2}(z) are computed explicitly. For large t≫1/r, the mean perimeter grows extremely slowly as 〈L(t)〉∝ln(rt) with time. Likewise, the mean area also grows slowly as 〈A(t)〉∝ln^{2}(rt) for t≫1/r. Our exact results indicate that the convex hull, in the presence of resetting, approaches a circular shape at late times due to the isotropy of the Brownian motion. Numerical simulations are in perfect agreement with our analytical predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.