Abstract

Task scheduling in the edge computing environment poses significant challenges due to its inherent NP-hard nature. Several researchers concentrated on minimizing simple makespan, disregarding the reduction of the mean time to complete all tasks, resulting in uneven distributions of mean completion times. To address this issue, this study proposes a novel mean makespan task scheduling strategy (MMTSS) to minimize simple and mean makespan. MMTSS optimizes the utilization of virtual machine capacity and uses the mean makespan optimization to minimize the processing time of tasks. In addition, it reduces imbalance by evenly distributing tasks among virtual machines, which makes it easier to schedule batches subsequently. Using genetic algorithm optimization, MMTSS effectively lowers processing time and mean makespan, offering a viable approach for effective task scheduling in the edge computing environment. The simulation results, obtained using cloudlets ranging from 500 to 2000, explicitly demonstrate the improved performance of our approach in terms of both simple and mean makespan metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.