Abstract
ABSTRACTThis paper presents the mean‐Gini (MG) approach to analyze risky prospects and construct optimum portfolios. The proposed method has the simplicity of a mean‐variance model and the main features of stochastic dominance efficiency. Since mean‐Gini is consistent with investor behavior under uncertainty for a wide class of probability distributions, Gini's mean difference is shown to be more adequate than the variance for evaluating the variability of a prospect. The MG approach is then applied to capital markets and the security valuation theorem is derived as a general relationship between average return and risk. This is further extended to include a degree of risk aversion that can be estimated from capital market data. The analysis is concluded with the concentration ratio to allow for the classification of different securities with respect to their relative riskiness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.