Abstract

We analyse the global flow structures in horizontal convection systems, where the heat supply and removal takes place through separated parts of a lower horizontal surface of a fluid layer. The results are based on direct numerical simulations for the length-to-height aspect ratio of the convection cell $\unicode[STIX]{x1D6E4}=10$, Rayleigh number $\mathit{Ra}$ from $3\times 10^{8}$ to $3\times 10^{11}$ and Prandtl number $\mathit{Pr}$ from 0.05 to 50. The structure of the mean flows in horizontal convection is described in terms of time-averaged spatial distributions of the temperature, velocity, kinetic energy, thermal and kinetic dissipation rates. A possible scenario of transition to turbulent horizontal convection in the whole convection cell of a large aspect ratio is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.