Abstract

A stochastic fluid queueing system describes the input–output flow of a fluid in a storage device, called a buffer. The rates at which the fluid enters and leaves the buffer depend on a random environment process. The external governing process is an irreducible CTMC and the fluid from the buffer is emptied at a constant rate μ. Let X( t) denote the buffer content at time t and I( t) denote the state of the random environment at time t. In this paper we present a method for computing the mean first passage times in the {X(t), t⩾0} process, as well as in the bivariate {(X(t),I(t)), t⩾0} process. We derive a system of first-order non-homogeneous linear differential equations for the mean first passage times which can easily be solved using well-known techniques. The method developed here can be readily implemented for computational purposes. We present two examples illustrating how to find explicitly the analytical solution to a small two-state problem and how to obtain numerical solutions to a multistate problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.