Abstract

Many biochemical processes, such as charge hopping or protein folding, can be described by an average timescale to reach a final state, starting from an initial state. Here, we provide a pedagogical treatment of the mean first-passage time (MFPT) of a physical process, which depends on the number of intervening states between the initial state and the target state. Our aim in this tutorial review is to provide a clear development of the mean first-passage time formalism and to show some of its practical utility. The MFPT treatment can provide a useful link between microscopic rates and the average timescales often probed by experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.