Abstract

The behavior of a particle in a solvent has been framed using stochastic dynamics since the early theory of Kramers. A particle in a chemical reaction reacts slower in a diluted solvent because of the lack of energy transfer via collisions. The flux-over-population reaction rate constant rises with increasing density before falling again for very dense solvents. This Kramers turnover is observed in this paper at intermediate and high temperatures in the backward reaction of the LiNC ⇌ LiCN isomerization via Langevin dynamics and mean first-passage times (MFPTs). It is in good agreement with the Pollak-Grabert-Hänggi (PGH) reaction rates at lower temperatures. Furthermore, we find a square root behavior of the reaction rate at high temperatures and have made direct comparisons of the methods in the intermediate- and high-temperature regimes, all suggesting increased ranges in accuracy of both the PGH and MFPT approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call