Abstract
Motivated by cell adhesion in hydrodynamic flow, here the authors study bond formation between a spherical Brownian particle in linear shear flow carrying receptors for ligands covering the boundary wall. They derive the appropriate Langevin equation which includes multiplicative noise due to position-dependent mobility functions resulting from the Stokes equation. They present a numerical scheme which allows to simulate it with high accuracy for all model parameters, including shear rate and three parameters describing receptor geometry (distance, size, and height of the receptor patches). In the case of homogeneous coating, the mean first passage time problem can be solved exactly. In the case of position-resolved receptor-ligand binding, they identify different scaling regimes and discuss their biological relevance.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.