Abstract
Abstract Thermally activated phenomena in physics and chemistry, such as conformational changes in biomolecules, liquid film rupture, or ferromagnetic field reversal, are often associated with exponentially long transition times described by Arrhenius’ law. The associated subexponential prefactor, given by the Eyring–Kramers formula, has recently been rigorously derived for systems in detailed balance, resulting in a sharp limiting estimate for transition times and reaction rates. Unfortunately, this formula does not trivially apply to systems with conserved quantities, which are ubiquitous in the sciences: The associated zeromodes lead to divergences in the prefactor. We demonstrate how a generalised formula can be derived, and show its applicability to a wide range of systems, including stochastic partial differential equations from fluctuating hydrodynamics, with applications in rupture of nanofilm coatings and social segregation in socioeconomics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.