Abstract

We investigate a mean-field approach to a quantum brownian particle interacting with a quantum thermal bath at temperature $T$, and subjected to a non-linear potential. An exact, partially classical description of quantum brownian motion is proposed, which uses negative probabilities in its intermediate steps. It is shown that properties of the quantum particle can be mapped to those of two classical brownian particles in a common potential, where one of them interacts with the quantum bath, whereas another one interacts with a classical bath at zero temperature. Due to damping the system allows a unique and non-singular classical limit at $\hbar \to 0$. For high $T$ the stationary state becomes explicitly classical. The low-temperature case is studied through an effective Fokker-Planck equation. Non-trivial purely quantum correlation effects between the two particles are found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.