Abstract

In the framework of molecular mean-field theory we study the effect of nanoparticles embedded in nematic liquid crystals on the orientational ordering and nematic–isotropic phase transition. We show that spherically isotropic nanoparticles effectively dilute the liquid crystal medium and decrease the nematic–isotropic transition temperature. At the same time, anisotropic nanoparticles become aligned by the nematic host and, reciprocally, improve the liquid crystal alignment. The theory clarifies the microscopic origin of the experimentally observed shift of the isotropic–nematic phase transition and an improvement of the nematic order in composite materials. A considerable softening of the first order nematic–isotropic transition caused by strongly anisotropic nanoparticles is also predicted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call