Abstract

The structures of He and Be even-even isotopes are investigated using an axially symmetric Hartree-Fock approach with a Skyrme-IIIls mean field potential. In these simple HF calculations, He and Be isotopes appear to be prolate in their ground states and Be isotopes have oblate shape isomeric states. It is also shown that there exists a level crossing when the nuclear shape changes from the prolate state to the oblate state. The single neutron levels of Be isotopes exhibit a neutron magic number 6 instead of 8 and show that the level inversion between 1/2- and 1/2+ levels occurs only for a largely deformed isotope. Protons are bound stronger in the isotope with more neutrons while neutron levels are somewhat insensitive to the number of neutrons and thus the nuclear size and also the neutron skin become larger as the neutron number increases. In these simple calculations with Skyrme-IIIls interaction no system with a clear indication of neutron halo was found among He and Be isotopes. Instead of it we have found 8He+2n, 2n+8He+2n, and 16Be+2n like chain structures with clusters of two correlated neutrons. It is also shown that 8He and 14Be in their ground states are below the neutron drip line in which all nucleons are bound with negative energy and that 16Be in its ground state is beyond the neutron drip line with two neutrons in positive energy levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.