Abstract

ABSTRACTOur purpose of this paper is to study stochastic control problems for systems driven by mean-field stochastic differential equations with elephant memory, in the sense that the system (like the elephants) never forgets its history. We study both the finite horizon case and the infinite time horizon case. In the finite horizon case, results about existence and uniqueness of solutions of such a system are given. Moreover, we prove sufficient as well as necessary stochastic maximum principles for the optimal control of such systems. We apply our results to solve a mean-field linear quadratic control problem.For infinite horizon, we derive sufficient and necessary maximum principles.As an illustration, we solve an optimal consumption problem from a cash flow modelled by an elephant memory mean-field system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.