Abstract
We consider nonlinear transport equations with non-local velocity describing the time-evolution of a measure. Such equations often appear when considering the mean-field limit of finite-dimensional systems modeling collective dynamics. We address the problem of controlling these equations by means of a time-varying bounded control action localized on a time-varying control subset of small Lebesgue measure. We first define dissipativity for nonlinear transport equations in terms of Lie derivatives of a Lyapunov function depending on the measure. Then, assuming that the uncontrolled system is dissipative, we provide an explicit construction of a control law steering the system to an invariant sublevel of the Lyapunov function. The control function and the control domain are designed in terms of the Lie derivatives of the Lyapunov function. In this sense the construction can be seen as an infinite-dimensional analogue of the well-known Jurdjevic–Quinn procedure. Moreover, the control law presents sparsity properties in the sense that the support of the control is small. Finally, we show that our result applies to a large class of kinetic equations modeling multi-agent dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Models and Methods in Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.