Abstract

The recent experimental advancement to realise ultracold gases scattering off an eight-fold optical potential [Phys. Rev. Lett. 122, 110404 (2019)] heralds the beginning of a new technique to study the properties of quasicrystalline structures. Quasicrystals possess long-range order but are not periodic, and are still little studied in comparison to their periodic counterparts. Here, we consider an ultracold bosonic gas in an eight-fold symmetric lattice and assume a toy model where the atoms occupy the ground states of the local minima of the potential. The ground state phases of the system are studied, with particular interest in the local nature of the phases. The usual Mott-insulator, density wave, and supersolid phases of the standard and extended Bose-Hubbard model are observed. For non-zero long-range interactions, we find that density wave states can spontaneously break the eight-fold symmetry, and may even possess no rotational symmetry. We find the local variation in the number of nearest neighbours to play a vital role in the phase transitions, local structure, and global symmetries of the ground states. This variation in the number of nearest neighbours is not a unique property of the considered eight-fold lattice, and we expect our results to be generalisable to any quasicrystalline potential where there are only small position dependent variations in the site energy, tunnelling and interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.