Abstract

We derive the equilibrium phase diagram of the classical dipolar Ising antiferromagnet at the mean-field level on a geometry that mimics the two dimensional Kagome lattice. Our mean-field treatment is based on the combination of the cluster variational Bethe-Peierls formalism and the cavity method, developed in the context of the glass transition, and is complementary to the Monte Carlo simulations realized in [Phys. Rev. B 98, 144439 (2018)]. Our results confirm the nature of the low temperature crystalline phase which is reached through a weakly first-order phase transition. Moreover, they allow us to interpret the dynamical slowing down observed in the work of Hamp & al. as a remnant of a spin glass transition taking place at the mean-field level (and expected to be avoided in 2 dimensions).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.