Abstract

This paper focuses on the role of a government of a large population of interacting agents as a meanfield optimal control problem derived from deterministic finite agent dynamics. The control problems are constrained by a Partial Differential Equation of continuity-type without diffusion, governing the dynamics of the probability distribution of the agent population. We derive existence of optimal controls in a measure-theoretical setting as natural limits of finite agent optimal controls without any assumption on the regularity of control competitors. In particular, we prove the consistency of mean-field optimal controls with corresponding underlying finite agent ones. The results follow from a Γ -convergence argument constructed over the mean-field limit, which stems from leveraging the superposition principle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call