Abstract

The objectives of the paper were twofold. The first was exploring possibility of fast and reliable modelling of phase transformations during cooling of steels, accounting for the evolution of the carbon concentration in the austenite. Existing discrete models require long computing times and their application to optimization of industrial processes is limited. Therefore, a model based on the modified JMAK equation was proposed. Control of the carbon concentration in the austenite during ferritic and bainitic transformations allowed to predict incomplete austenite transformation and occurrence of the retained austenite. Moreover, prediction of the onset of pearlitic transformation after the bainitic was possible. The model was validated by comparison the predictions with the results of physical simulations. Numerical simulations for various industrial processes were performed. Problem of the difference in the incubation time between isothermal and constant cooling rate tests was raised.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.