Abstract

We consider mean-field control problems in discrete time with discounted reward, infinite time horizon and compact state and action space. The existence of optimal policies is shown and the limiting mean-field problem is derived when the number of individuals tends to infinity. Moreover, we consider the average reward problem and show that the optimal policy in this mean-field limit is varepsilon -optimal for the discounted problem if the number of individuals is large and the discount factor close to one. This result is very helpful, because it turns out that in the special case when the reward does only depend on the distribution of the individuals, we obtain a very interesting subclass of problems where an average reward optimal policy can be obtained by first computing an optimal measure from a static optimization problem and then achieving it with Markov Chain Monte Carlo methods. We give two applications: Avoiding congestion an a graph and optimal positioning on a market place which we solve explicitly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call