Abstract
We consider a class of systems of time dependent partial differential equations which arise in mean field type models with congestion. The systems couple a backward viscous Hamilton–Jacobi equation and a forward Kolmogorov equation both posed in (0,T)×(RN/ZN). Because of congestion and by contrast with simpler cases, the latter system can never be seen as the optimality conditions of an optimal control problem driven by a partial differential equation. The Hamiltonian vanishes as the density tends to +∞ and may not even be defined in the regions where the density is zero. After giving a suitable definition of weak solutions, we prove the existence and uniqueness results of the latter under rather general assumptions. No restriction is made on the horizon T.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.