Abstract
We present a theoretical framework, based on differential mean field games, for expressing diel vertical migration in the ocean as a game with a continuum of players. In such a game, each agent partially controls its own state by adjusting its vertical velocity but the vertical position in a water column is also subject to random fluctuations. A representative player has to make decisions based on aggregated information about the states of the other players. For this vertical differential game, we derive a mean field system of partial differential equations for finding a Nash equilibrium for the whole population. It turns out that finding Nash equilibria in the game is equivalent to solving a PDE-constrained optimization problem. We detail this equivalence when the expected fitness of the representative player can be approximated with a constant and solve both formulations numerically. We illustrate the results on simple numerical examples and construct several test cases to compare the two analytical approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.